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Application Note AN-0210-1 

Tracking Instrument Behavior 
A frequently asked question is “How can I be sure that my instrument is 
performing normally?” Before we can answer this question, we must define what is 
normal. Nothing is absolute in radiation measurements. Any such measurement, 
repeated under supposedly identical conditions, will yield a variety of answers. 
Determining if an instrument is behaving normally is therefore a statistical problem. 
Are the variances of the measurements truly behaving like a statistical model would 
predict? This begs the question, “What is the model?” 

There is no avoiding it, a working knowledge of statistics is necessary to understand 
the limitations of radiation counters, predict the associated errors, and determine 
if an instrument is performing as it should. This knowledge also helps explain the 
need for many of the features built into most contemporary instruments. For our 
purposes the emphasis is on “a working knowledge.” You do not need to know how the 
statistical tools were derived only when and how to apply them.   

The Goal 
Before your eyes start to roll back in your head, remember the lead question. 
The following several paragraphs present a synopsis of the statistical concepts 
related to radiation counting. An excellent overview of statistics as it relates to radiation 
applications is presented in Knoll’s book “Radiation Detection and Measurement”. 
Knoll states that one of the applications “… involves the use of these statistics to 
determine where a set of multiple measurements of the same physical quantity shows 
an amount of internal fluctuation that is consisted with statistical predictions. This 
application usually is used to determine whether a particular counting system is 
functioning normally.” The goal of this document is to explain that stated application in 
conjunction what alpha/beta counters. 

Statistical Models 
A collection of radiation measurements (repeated under supposedly identical conditions) 
yields a distribution. A variety of distribution models have been developed 
describing statistical behavior. The grandfather of them all is the binomial 
distribution but it is cumbersome to use in its standard form. More simplified 
derivatives apply to the specific characteristics related to the radiation decay 
processes. One such derivative is the Poisson distribution.  

The Poisson Distribution 
Siméon-Denis Poisson was a French mathematician. His work focused on certain 
random variables that count, among other things, the number of discrete occurrences 
that take place during a time interval of given length – sounds like a radiation counter 
doesn’t it.  
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The key word above is discrete as in the decay of an atom where either a particle is 
ejected or not, a fractional particle does not exist, and with an instrument the particle 
is either detected or not. The Poisson distribution applies to observations with a 
large number of possible events, each of with is rare; conditions that again describe the 
nuclear decay of atoms.   

The Poisson distribution equation is described in a number of texts and on-line 
sources so it won’t be repeated here. While the Poisson distribution is much easier to 
work with than its parent, the binomial, when the mean value is low it lacks the symmetry 
that would make it even easier to use. The symmetry we speak of is a characteristic 
of a “normal distribution.” 

Unlike the Poisson distribution, the measured variables in a normal distribution can 
take on a continuum of values. With a radiation detection measurement that is not the 
case; an event either occurs or it does not. None-the-less, under certain conditions the 
normal distribution may be used.  

If the mean value of a Poisson distribution is large (e.g., greater than 20), the 
equation describing the distribution becomes almost identical to that of the normal 
distribution.  

Normal Distribution 
The normal distribution, sometimes called a Gaussian distribution, with its familiar bell 
curve, describes measurements that take on a continuum of values. The normal 
distribution (Figure 1) has a mean value µ representing the true value of the quantity x 
being measured. The curve is further defined by σ, the standard deviation.  

A normal distribution containing N observations has a mean value µ defined as:   
𝜇𝜇 ≡ 𝑋𝑋�

Mean Value – Equation 1 
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In addition, it has a standard deviation σ defined as: 

𝜎𝜎 ≡ �𝑋𝑋�
Standard Deviation – Equation 2 

As the figure above illustrates, 68% of the values lie within 1 standard deviation of 
the mean; 95.4% lie within 2 standard deviations; and 99.6% lie within 3 standard 
deviations. 

With a set of experimental data: 

𝑋𝑋𝑒𝑒��� =
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Experimental Mean – Equation 3 

And the experimental standard deviation is: 

𝜎𝜎𝑒𝑒 = �∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑒𝑒���)2𝑁𝑁
𝑖𝑖=1
𝑁𝑁 − 1

Experimental Std Deviation – Equation 4 

This is our entire synopsis of statistics; let’s return the focus back to the goal. 
Knowing that radiation counters are expected to behave according to the statistical 
models, it follows that we need a quantitative method of comparing actual behavior 
with predicted behavior. One such method is the chi square test.  

Chi-Square Test 
The chi squared test is a quantitative way of judging whether or not the variances of 
a population of counting results match statistical predictions to some stated degree 
of certainty. Used in this way, it is called a “goodness of fit” test.  

The chi squared value is represented by X2. The value N is the number of trials, 
observations, or counted intervals. The value of a specific observation i is Xi. The mean 
of the population of observations is �Xe as defined in Equation 3 above. With this 
information, the chi squared may be calculated using Equation 5.    

𝑋𝑋2 ≡
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑒𝑒���)𝑁𝑁
𝑖𝑖=1

2

𝑋𝑋𝑒𝑒���
Chi Squared – Equation 5 

The relationship between the actual or experimental variance and the predicted 
variance is given by:  



Protean Instrument 
10744 Dutchtown Road, Knoxville, TN 37932 TEL/FAX: 865-392-4600 www.proteaninstrument.com 

Page 4 of 8 AN0210-1 7/27/2010 
Copyright 2010 Protean Instrument 

𝑋𝑋2 = (𝑁𝑁 − 1)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
Chi Squared ∝ Variances – Equation 6

In this expression, (N-1) is equivalent to a statistical value referred to as “the number 
of degrees of freedom.” If the actual variance perfectly matches the predicted variance, 
the chi squared value equals the number of degrees of freedom.  

If the chi squared value is greater than the number of degrees of freedom, there is 
a greater variance than expected and vice versa. From an analytical perspective, the 
former would indicate that the instrument is under the influence of some abnormal 
fluctuations. Less variance than expected might indicate the instrument is being 
influenced by some periodic oscillation such as an ac noise source (i.e., the population 
is not random).   

Chi squared is a probability distribution with finite boundaries. The general test for a 
“goodness of fit” for counting instruments is a 99% confidence level. For example, we 
can state that if a calculated chi squared value for a set of experimental data is less than 
some upper critical value and greater than some lower critical value there is a 99% 
probability that the experimental variances agree with the model.  

To find the critical value boundaries for specific probabilities and degrees of freedom 
we turn to chi square tables or use a chi square calculator. Either way, we use the 
number of degrees of freedom and the probabilities and then extract the critical 
values – the specific probabilities in our case are 0.99 for the upper critical value and 
0.01 for the lower critical value. The table below shows the critical values used with a 
chi squared test for various sets of counts and a 99% confidence level.  

N Lower C.V. Upper C.V. 
10 2.09 21.67 
20 7.63 36.19 
50 28.94 74.92 

100 69.23 134.64 
150 111.80 192.07 
200 155.55 248.33 

The chi squared test is only valid when a normal distribution is 
assumed, therefore a minimum of 10 observations (and 
preferably 20) are needed with a minimum of 10 counts per 
observation – adjust the counting time accordingly.  

Trend Charts 
The chi squared test is generally applied to a set of data taken in short succession. It has 
customarily been used as a daily or weekly check on an instrument as the benchmark for 
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suitability of use. In these checks ten or twenty short counts are made on a 
radioactive source and the chi squared values calculated and compared to the expected 
range. When a problem is suspected, the chi squared test and a graphic display of 
data are valuable diagnostic tools.  

Nothing replaces that graph as an intuitive tool for judging instrument performance 
and recognizing problem patterns. One such use is multiple short-term backgrounds to 
spot abnormal bursts such as a detector breakdown. Most of Protean’s instruments 
provide a trending function as a diagnostics tool. Individual data points are plotted about 
the mean of the population with the ±2 and ±3 standard deviation lines shown to aid in 
the analysis. This function also calculates chi squared values for the data set. 

As previously discussed, the chi squared value provides a quantitative measure of 
the “goodness of fit”. The graphical presentation helps identify and draw conclusions 
about short term counting trends that might be associated with changes in the 
count room environment or equipment malfunctions.  

Control Charts 
The chi squared test with or without Protean’s trending and charting accessories 
is intended as a short-term test. Long term tracking of instrument performance is 
relegated to what Protean refers to as the control chart. Semantically this name may not 
be correct since these charts do not exert any direct control over the instrument but the 
name and its described usage is commonly accepted. What follows is a discussion 
relating to Protean’s interpretation and use of these charts.  

Protean’s control charts consist of two data sets. The first set establishes the limits for 
acceptable or expected performance; hence our referral to it as the “Limits Data.” Since 
this data set is expected to represent a Poisson distribution simplified as a normal 
distribution, the mean value of the population should be greater than 20 and there 
should be at least 10 (preferably more) observations (count intervals) in the set. The 
counting time for each interval should be chosen to meet the ≥20 count criterion. This 
may not be practical when creating background control charts for systems exhibiting 
very low inherent backgrounds, in which case remember that the normal distribution 
rules are not valid.  

The second data set contains the post historical data, i.e. the routine checks; hence 
we refer to it as the “Checks Data.” The normal distribution predicts that 95.4% of the 
checks should lie within 2 standard deviations as determined from the Limits Data; 
and 99.6% should lie within 3 standard deviations. Outliers would indicate that the 
checks are influenced by something other than counting statistics.  

A frequently asked question is why, when some Limits Data is replicated onto a 
spread sheet and the standard deviations calculated, are they different from those 
reported by the instrument? The likely answer is propagation of errors.  

The spread sheet functions only calculate the error associated with the statistics of the 
count. To quote from a circa 1960 document long lost in antiquity, “…Generally speaking, 
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the stability of counting apparatus is such that the fundamental statistical error 
will dominate if it is greater than 1 percent.” In this quote, what the statistical error 
dominates is the systematic error associated with the counting apparatus.  

Using Equation 7 a statistical error of 1% is equivalent to an accumulated count of 
10,000 counts. In low level counting situations this is seldom the case; however, 
with check sources it is easy to exceed 10,000 counts even during a 1 minute count! 

𝑒𝑒𝑆𝑆 =
�𝑋𝑋�
𝑋𝑋�

Fractional Statistical Error – Equation 7 

The systematic error represents any variance associated with the counting apparatus 
and may be a combination of barometric and temperature variances, gas 
quality for proportional counters, electronic variances, and sample positioning 
variances. 

Positioning variances are a combination of non-uniform distribution of radioactivity on 
the surface of the check source and any non-uniformity in the efficiency across the 
active area of the detector. Seldom does one ensure that the check source is placed in 
exactly the same orientation between each check.  

Real life experiences are the best teachers. An example of systematic error was 
encountered when a number of associated laboratories complained that their counting 
systems frequently failed the 2σ test in their self-defined control charts. Their imposed 
rules were to collect >100,000 counts per daily check. From Equation 7 the statistical 
error in this case is <0.3% and their control chart limits <±0.6% (2σ). The local weather 
service confirmed that during this same period the barometric pressure of the 
atmosphere varied by over 10%. The correlation between these variations and the 
control charts showed a perfect match. This proves that an excellent way to implement 
an air density gauge is to measure the energy absorption in a gap between an alpha or 
beta source and a detector.  

The frequent failure issue was relieved by acknowledging the influence of a systematic 
error and incorporating and propagating it in their control charts. The industry 
standard for systematic error with regards to alpha/beta counters is 1% (1sigma).  

Equation 8 is used to propagate the errors from the sum of two random sources. 

Propagating errors from a Sum – Equation 8 

When applied to counting instruments this reduces to Equation 9 where p is the 
fractional error (0.01 in our case). 
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Limited Deviation includes Systematic Error – Equation 9 

Equation 9 limits the standard deviation of the charts to ≥1% and prevents the 
establishment of unreasonable limits for instrument reproducibility. The limited standard 
deviation method should be used when calculating control chart deviations. 

Source Decay 
Long term control charts may also show deviations due to source decay which may 
be mistaken for instrument errors. Even sources with a 20 to 30 year half life will 
show approximately 1% decline after a year. This decay will be observed if raw 
counts are plotted over extended periods.  

One way to prevent a control chart from being skewed by source decay is to plot 
efficiency rather than counts; providing the source activity is decay corrected.  

𝜀𝜀 =
𝑋𝑋𝑖𝑖 𝑡𝑡�
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑

Efficiency Factor Calculation – Equation 10 

Equation 10 is used to calculate an efficiency factor where t is the count time in 
minutes and A is the calibrated activity at the time of the count in disintegrations per 
minute (dpm). This implies that the activity is decay corrected. When Protean’s control 
chart function is used to track efficiency, decay correction is automatic assuming the 
source information is provided during setup.  

Whenever multiplication or division is performed on two variables as in Equation 10, and 
each has an associated error, Equation 11 is the rule used to propagate those errors.  

𝜎𝜎𝑇𝑇 = 𝑋𝑋𝑇𝑇��
𝜎𝜎1
𝑋𝑋1
�
2

+ �
𝜎𝜎2
𝑋𝑋2
�
2

Propagated Errors for Multiplication or Division of Variables – Equation 11 

The source manufacturer normally includes a calibration sheet specifying the 
error associated with the stated activity. The date of the calibration and half-life of the 
specific isotope is used for decay correction. Combining Equations 10 and 11 to 
propagate the activity error and the counting errors yields Equation 12.  
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𝜎𝜎𝜀𝜀 = 𝜀𝜀�̅�
𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿
𝑋𝑋𝑒𝑒���

�
2

+ �
𝜎𝜎𝐴𝐴

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑
�
2

Deviation with Propagated Activity Error – Equation 12 

Protean’s computer applications that include efficiency tracking control charts 
use Equation 12 to compute the control chart limits. The source error provided 
by the manufacturer almost always dominates the combined systematic and counting 
error; this may suggest a valid argument for excluding it. Another alternative is to 
assign an error that is less conservative than that assigned by the source 
manufacturer – at least for control chart purposes.  
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